Predicting labor market trends through the analysis of open data from job applicants in social networks
Tatiana V. Azarnova
Voronezh State University, Russia This email address is being protected from spambots. You need JavaScript enabled to view it.
Ekaterina S. Dashkova
Voronezh State University, Russia e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.
Natalia V. Dorokhova
Voronezh State University, Russia e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.
Irina L. Kashirina
MIREA – Russian Technological University, Moscow, Russia This email address is being protected from spambots. You need JavaScript enabled to view it.
Voronezh State University, Russia This email address is being protected from spambots. You need JavaScript enabled to view it.
Ekaterina S. Dashkova
Voronezh State University, Russia e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.
Natalia V. Dorokhova
Voronezh State University, Russia e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.
Irina L. Kashirina
MIREA – Russian Technological University, Moscow, Russia This email address is being protected from spambots. You need JavaScript enabled to view it.
TERRA ECONOMICUS, Vol. 23, No 2, 2025/06/25
Citation: Azarnova T.V., Dashkova E.S., Dorokhova N.V., Kashirina I.L. (2025). Predicting labor market trends through the analysis of open data from job applicants in social networks. Terra Economicus 23(2), 43–61 (in Russian). DOI: 10.18522/2073-6606-2025-23-2-43-61
The article examines trends in the supply of labor market, including the reduction of supply, “aging” workforce, and widening gap between professional and qualifications of job seekers and vacancies. Economic sociology methodology allowed to identify and analyze the influence of quality variables on current state and development trends of supply. Social networks are proved to be a valuable source of information about professional choice. Special methods for obtaining information from applicant’s route maps and processing with machine learning models allow to build analytical tools for identifying social and behavioral characteristics, predicting future choices. Quality metrics for machine learning models are presented and compared. Results indicate high quality of forecasting tools, which can be used to adjust supply. Practical significance lies in improving career guidance, prediction of applicants’ choice, optimization of the allocation of university places to students, assessment of admission stress index. Our analytical tools allow to assess how the planned indicators correspond with demand for education and to analyze the effectiveness of the mechanism for informing students about market trends.
Keywords: labor market; supply in the labor market; professional choice; career guidance; analytical tools; machine learning
JEL codes: J21, J24
References:
- Азарнова Т.В., Каширина И.Л., Швиндт А.Н. (2018). Нейросетевое моделирование взаимодействия субъектов рынка труда и образовательных услуг. Моделирование, оптимизация и информационные технологии, 6(4), 225–243. [Azarnova, T., Kashirina, I., Schwindt, A. (2018). Neural network modeling of interaction between subjects of the labor market and educational services. Modeling, Optimization and Information Technologies, 6(4), 225–243 (in Russian)].
- Архипова Н.И., Абаев А.Л., Голова А.Г., Гуриева М.Т. (2022). Сопряжение CJM абитуриента с профилем вуза в цифровой среде как управленческая задача. E-Management, 5(3), 106–116. [Arkhipova, N., Abaev, A., Golova, A., Gurieva, M. (2022). Pairing the applicant's CJM with the profile of the university in the digital environment as a managerial task. E-Management, 5(3), 106–116 (in Russian)].
- Балацкий Е.В., Екимова Н.А. (2023). Перспективы демографической экспансии России: экономика, институты, культура. Terra Economicus, 21(2), 23–37. [Balatsky, E., Ekimova, N. (2023). Prospects for Russia's demographic expansion: Economics, institutions, culture. Terra Economicus, 21(2), 23–37 (in Russian)].
- Буланова М.Б., Артамонова Е.А. (2022). NEET-молодежь: потребительское поведение в новой реальности. Вестник Российского университета дружбы народов. Серия: Социология, 22(1), 113–125. [Bulanova, M., Artamonova, E. (2022). NEET-youth: Consumer behavior in the new reality. Bulletin of the Peoples' Friendship University of Russia. Series: Sociology, 22(1), 113–125 (in Russian)].
- Васюков К.Л., Орлов С.А., Ошева М.С., Фещенко А.В. (2018). Университет в поисках своего абитуриента в социальных сетях: маркетинговые и технологические задачи. Гуманитарная информатика, (14), 67–76. [Vasyukov, K., Orlov, S., Osheva, M., Feshchenko, A. (2018). The university in search of its entrant in social networks: Marketing and technological tasks. Humanitarian Informatics, (14), 67–76 (in Russian)].
- Вольчик В.В., Маслюкова Е.В. (2023). Социальное государство и кадры для российской инновационной системы. Журнал исследований социальной политики, 21(3), 449–466. [Volchik, V., Maslyukova, E. (2023). The social state and personnel for the Russian innovation system. Journal of Social Policy Research, 21(3), 449–466 (in Russian)].
- Зинич А.В., Ревякина Ю.Н., Ревякин П.И. (2022). Молодежь на рынке труда в цифровую эпоху: социально-профессиональный аспект. Экономика труда, 9(10), 1605–1616. [Zinich, A., Revyakina, Yu., Revyakin, P. (2022). Youth on the labor market in the digital age: socio-professional aspect. Labor Economics, 9(10), 1605–1616 (in Russian)].
- Калабина Е.Г., Шадрина Е.А. (2022). Трансформация занятости возрастных работников в современной России: причины и последствия. Экономика труда, 9(10), 1577–1590. [Kalabina, E., Shadrina, E. (2022). Transformation of employment of age-related workers in modern Russia: Causes and consequences. Labor Economics, 9(10), 1577–1590 (in Russian)].
- Капелюшников Р.И. (2023). Российский рынок труда: статистический портрет на фоне кризисов. М.: Изд. дом Высшей школы экономики. [Kapelyushnikov, R. (2023). The Russian Labor Market: A Statistical Portrait Against the Background of Crises. Moscow: Publishing House of the Higher School of Economics (in Russian)].
- Кашепов А.В., Афонина К.В., Головачёв Н.В. (2021). Рынок труда РФ в 2020–2021 гг.: безработица и структурные изменения. Социально-трудовые исследования, 43(2), 33–44. [Kashepov, A., Afonina, K., Golovachev, N. (2021). The Russian labor market in 2020–2021: Unemployment and structural changes. Social and Labor Research, 43(2), 33–44 (in Russian)].
- Каширина И.Л., Азарнова Т.В., Бондаренко Ю.В. (2022). Разработка методов оценки эффективности человеческих ресурсов на основе алгоритмов глубокого обучения. Инженерный вестник Дона, (2), 156–166. [Kashirina, I., Azarnova, T., Bondarenko, Yu. (2022). Development of methods for evaluating the effectiveness of human resources based on deep learning algorithms. Engineering Bulletin of the Don, (2), 156–166 (in Russian)].
- Кашпур В.В., Петров Е.Ю., Гойко В.Л., Фещенко А.В. (2021). Возможности использования цифровых следов для прогнозирования образовательных достижений студентов. Вестник Томского государственного университета. Философия. Социология. Политология, (64), 140–150. [Kashpur, V., Petrov, E., Goiko, V., Feshchenko, A. (2021). Possibilities of using digital traces to predict students' educational achievements. Bulletin of Tomsk State University. Philosophy. Sociology. Political Science, (64), 140–150 (in Russian)].
- Кудиньш Я., Комарова В., Чижо Э., Кокаревича А. (2022). Влияние старения рабочей силы на производительность экономики. Вестник Витебского государственного технологического университета, (1), 181–196. [Kudins, Ya., Komarova, V., Chizho, E., Kokarevich, A. (2022). The impact of an aging workforce on economic productivity. Bulletin of the Vitebsk State Technological University, (1), 181–196 (in Russian)].
- Кудринская И.В., Кидинов А.В., Кабкова Е.П. и др. (2020). Проблема профориентации молодежи в отечественной педагогической теории и практике. Евразийский журнал биологических наук, (14), 3815–3821. [Kudrinskaya, I., Kidinov, A., Kabkova, E. et al. (2020). The problem of youth career guidance in Russian pedagogical theory and practice. Eurasian Journal of Biological Sciences, (14), 3815–3821 (in Russian)].
- Ларионова Н.И., Юрьева О.В., Бурганова Л.А. (2022). Рынок труда в условиях цифровой трансформации экономики. Вестник экономики, права и социологии, (4), 90–97. [Larionova, N., Yurieva, O., Burganova, L. (2022). The labor market in the context of the digital transformation of the economy. Bulletin of Economics, Law and Sociology, (4), 90–97 (in Russian)].
- Лукичёв П.М., Чекмарев О.П., Конев П.А. (2023). Новые вызовы современного рынка труда: работники старших возрастов vs пенсионеры. Экономика труда, 10(4), 525–542. [Lukichev, P., Chekmarev, O., Konev, P. (2023). New challenges of the modern labor market: older workers vs pensioners. Labor Economics, 10(4), 525–542 (in Russian)].
- Мирзабалаева Ф.И., Антонова Г.В. (2023). Структурные диспропорции спроса и предложения на рынке труда в отраслевом и профессионально-квалификационном разрезах. Экономика труда, 10(8), 1145–1168. [Mirzabalayeva, F., Antonova, G. (2023). Structural imbalances of supply and demand in the labor market in the sectoral and vocational-qualification sections. Labor Economics, 10(8), 1145–1168 (in Russian)].
- Можаева Г.В., Суханова Е.А., Фещенко А.В. (2018). Привлечение и удержание университетами абитуриентов с высоким образовательным потенциалом с помощью анализа открытых пользовательских данных социальной сети «ВКонтакте». Открытое и дистанционное образование, (4), 52–58. [Mozhaeva, G., Sukhanova, E., Feshchenko, A. (2018). Attracting and retaining university applicants with high educational potential by analyzing open user data of the VKontakte social network. Open and Distance Education, (4), 52–58 (in Russian)].
- Можаева Г.В., Фещенко А.В., Слободская А.В. (2017). Информационный потенциал социальных сетей для выявления образовательных потребностей школьников. Открытое и дистанционное образование, (3), 25–30. [Mozhaeva, G., Feshchenko, A., Slobodskaya, A. (2017). The information potential of social networks to identify the educational needs of schoolchildren. Open and Distance Education, (3), 25–30 (in Russian)].
- Никулина Ю.Н. (2020). Профессиональная ориентация молодежи в системе кадрового обеспечения экономики региона. Экономика, предпринимательство и право, 10(4), 1263–1280. [Nikulina, Yu. (2020). Professional orientation of youth in the system of personnel support of the regional economy. Economics, Entrepreneurship and Law, 10(4), 1263–1280 (in Russian)].
- Перова Ю.П., Григорьев В.Р., Жуков Д.О. (2023). Модели и методы анализа сложных сетей и социальных сетевых структур. Russian Technological Journal, 11(2), 33–49. [Perova, Yu., Grigoriev, V., Zhukov, D. (2023). Models and methods for analyzing complex networks and social network structures. Russian Technological Journal, 11(2), 33–49 (in Russian)].
- Плотников Д.В., Богатов А.В. (2020). Обзор алгоритмов машинного обучения. Информационные технологии: межвузовский сборник научных трудов. Рязань: ИП Коняхин А.В. (Book Jet), с. 112–114. [Plotnikov, D., Bogatov, A. (2020). Review of machine learning algorithms. Information Technologies. Сollection of papers. Ryazan: Konyakhin A.V. Publ. (Book Jet), pp. 112–114 (in Russian)].
- Радаев В.В. (2002). Еще раз о предмете экономической социологии. Экономическая социология, 3(3), 21–34. [Radaev, V. (2002). Once again about the subject of economic sociology. Economic Sociology, 3(3), 21–34 (in Russian)].
- Симонова М.В., Санкова Л.В., Мирзабалаева Ф.И. (2023). Стратегическое планирование кадрового обеспечения социально значимых отраслей экономики регионов. Креативная экономика, 17(8), 2815–2838. [Simonova, M., Sankova, L., Mirzabalaeva, F. (2023). Strategic planning of personnel support for socially significant sectors of the regional economy. Creative Economics, 17(8), 2815–2838 (in Russian)].
- Соболева И.В. (2022). Профессионально-квалификационный дисбаланс как вызов экономической и социальной безопасности. Экономическая безопасность, 5(3), 989–1008. [Soboleva, I. (2022). Professional and qualification imbalance as a challenge to economic and social security. Economic Security, 5(3), 989–1008 (in Russian)].
- Степаненко А.А., Шиляев К.С., Резанова З.И. (2018). Атрибуция профессиональных интересов пользователей социальной сети «ВКонтакте» на основе текстов тематических групп и персональных страниц. Вестник Томского государственного университета. Филология, (52), 130–144. [Stepanenko, A., Shilyaev, K., Rezanova, Z. (2018). Attribution of professional interests of users of the VKontakte social network based on texts of thematic groups and personal pages. Bulletin of Tomsk State University. Philology, (52), 130–144 (in Russian)].
- Тарасьев А.А. (2020). Оценка и прогнозирование развития российского рынка труда в условиях динамики трудовой миграции. Диссертация на соискание ученой степени кандидата экономических наук. Екатеринбург. [Tarasyev, A. (2020). Assessment and Forecasting of the Development of the Russian Labor Market in the Context of Labor Migration Dynamics. A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Candidate of Economic Sciences. Yekaterinburg (in Russian)].
- Фещенко А.В., Гойко В.Л., Степаненко А.А., Суханова Е.А., Мацута В.В., Киселев П.Б. (2017). Методы и инструменты выявления перспективных абитуриентов в социальных сетях. Открытое и дистанционное образование, (4), 45–52. [Feshchenko, A., Goiko, V., Stepanenko, A., Sukhanova, E., Matsuta, V., Kiselev, P. (2017). Methods and tools for identifying promising applicants in social networks. Open and Distance Education, (4), 45–52 (in Russian)].
- Шабанова М.А. (2005). Социоэкономика и экономическая социология: точки размежевания и интеграции. Экономическая социология, 6(5), 12–27. [Shabanova, M. (2005). Socio-economics and economic sociology: Points of separation and integration. Economic Sociology, 6(5), 12–27 (in Russian)].
- Этциони А. (2002). Социоэкономика: дальнейшие шаги. Экономическая социология, 3(1), 65–71. [Etzioni, A. (2002). Socio-economics: Further steps. Economic Sociology, 3(1), 65–71 (in Russian)].
- Børing, P., Grøgaard, J. (2023). Do older employees have a lower individual productivity potential than younger employees? Journal of Population Ageing, 16, 369–397. DOI: https://doi.org/10.1007/s12062-020-09323-1
- Borsch-Supan, A., Weiss, M. (2016). Productivity and age: Evidence from work teams at the assembly line. Journal of the Economics of Ageing, (7), 30–42.
- Calvó-Armengol, A., Matthew, O. (2004). The effects of social networks on employment and inequality. American Economic Review, 94(3), 426–454.
- Feshchenko, A., Goiko, V., Matsuta, V. et al. (2018). Modelling of an educational profile of a student by analyzing public user data from social networks. INTED 2018: Proceedings of the 12th International Technology, Education and Development Conference, Valencia. Ed. by Gómez Chova, L., López Martínez, A., Candel Torres, I. Valencia: IATED Academy.
- Feurer, M., Hutter, F. (2019). Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Cham: Springer, pp. 3–33. DOI: https://doi.org/10.1007/978-3-030-05318-5_1
- Fossen, F., Sorgner, A. (2019). Mapping the future of occupations: Transformative and destructive effects of new digital technologies on jobs. Foresight and STI Governance, 13(2), 10–18.
- Frey, C., Osborne, M. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, (114), 254–280.
- Graetz, G., Restrepo, P., Skans, O. (2022). Technology and the labor market. Labour Economics, (76), 102177.
- He, H., Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley-IEEE Press.
- Iranzad, R., Liu, X. (2024). A review of random forest-based feature selection methods for data science education and applications. International Journal of Data Science and Analytics. DOI: https://doi.org/10.1007/s41060-024-00509-w
- Jin, K., Zhong, Z., Zhao, E. (2024). Sustainable digital marketing under big data: An AI random forest model approach. IEEE Transactions on Engineering Management, (71), 3566–3579.
- Mezzanzanica, M., Mercorio, F. (2018). Big data enables labor market intelligence. In: Sakr, S., Zomaya, A. (a cura di). Encyclopedia of Big Data Technologies. Springer, pp. 1–11.
- Schmutte, I. (2016). How do social networks affect labor markets? IZA World of Labor, 2016, 304.
- Shchekotin, E., Goiko, V., Myagkov, M., Dunaeva, D. (2021). Assessment of quality of life in regions of Russia based on social media data. Journal of Eurasian Studies, 12(2), 182–198.
- Zhou, Z. (2012). Ensemble Methods: Foundations and Algorithms. London: Chapman and Hall.
- Zudina, A. (2017). What makes youth become NEET? The evidence from Russian LFS. NRU Higher School of Economics Series Working Paper BRP Economics/EC. № WP BRP 177/EC/2017.
Publisher: Southern Federal University
ISSN: 2073-6606
ISSN: 2073-6606