SFeDu

Complexity economics: a different framework for economic thought

TERRA ECONOMICUS, , Vol. 13 (no. 2),
p. 15-37

This paper provides a logical framework for complexity economics. Complexity economics builds from the proposition that the economy is not necessarily in equilibrium: economic agents (firms, consumers, investors) constantly change their actions and strategies in response to the outcome they mutually create. This further changes the outcome, which requires them to adjust afresh. Agents thus live in a world where their beliefs and strategies are constantly being «tested» for survival within an outcome or «ecology» these beliefs and strategies together create. Economics has largely avoided this nonequilibrium view in the past, but if we allow it, we see patterns or phenomena not visible to equilibrium analysis. These emerge probabilistically, last for some time and dissipate, and they correspond to complex structures in other fields. We also see the economy not as something given and existing but forming from a constantly developing set of technological innovations, institutions, and arrangements that draw forth further innovations, institutions and arrangements. Complexity economics sees the economy as in motion, perpetually «computing» itself – perpetually constructing itself anew. Where equilibrium economics emphasizes order, determinacy, deduction, and stasis, complexity economics emphasizes contingency, indeterminacy, sense-making, and openness to change. In this framework time, in the sense of real historical time, becomes important, and a solution is no longer necessarily a set of mathematical conditions but a pattern, a set of emergent phenomena, a set of changes that may induce further changes, a set of existing entities creating novel entities. Equilibrium economics is a special case of nonequilibrium and hence complexity economics, therefore complexity economics is economics done in a more general way. It shows us an economy perpetually inventing itself, creating novel structures and possibilities for exploitation, and perpetually open to response.


Keywords: nonequilibrium; complexity; complexity economics; clustered volatility; networks; ecologies; computation; procedural science

References:
  • ACM Ubiquity Symposium (2010). What is Computation?
  • Angeletos G.-M. and La’O J. (2011). Decentralization, Communication, and the Origins of Fluctuations // NBER Working Paper no. 17060. Cambridge, Ma.: NBER.
  • Albert R., Jeong H. and Barabasi A-L. (2000). Attack and Error Tolerance of Complex Networks // Nature, vol. 406, pp. 379–382.
  • Allen F. and Gale D. (2000). Financial Contagion // Journal of Political Economy, vol. 108, no. 1, pp. 1–33.
  • Arrow K., Anderson P. and Pines D. (1988). The Economy as an Evolving Complex System. Reading, MA, Addison-Wesley.
  • Arthur W.B. (1989). Competing Technologies, Increasing Returns, and Lock-In by Historical Events // Economic Journal, vol. 99, pp. 116–131.
  • Arthur W.B. (1994). Bounded Rationality and Inductive Behavior (the El Farol problem) // American Economic Review Papers and Proceedings, vol. 84, pp. 406–411.
  • Arthur W.B. (1994). Increasing Returns and Path Dependence in the Economy. Ann Arbor, MI: University of Michigan Press.
  • Arthur W.B., Durlauf S. and Lane D. (eds.) (1997). The Economy as an Evolving Complex System II. Reading, MA, Addison-Wesley.
  • Arthur W.B., Holland J.H., LeBaron B., Palmer R. and Tayler P. (1997). Asset Pricing under Endogenous Expectations in an Artificial Stock Market / In: Arthur W.B., Durlauf S. and Lane D., op. cit.
  • Arthur W.B. (1999). Complexity and the Economy // Science, vol. 284, pp. 107–109.
  • Arthur W.B. (2006). Out-of-equilibrium Economics and Agent-based Modeling / In: Tesfatsion L. and Judd K., op. cit. below.
  • Arthur W.B. and Polak W. (2006). The Evolution of Technology in a Simple Computer Model // Complexity, vol. 11, no. 5.
  • Arthur W.B. (2009). The Nature of Technology: What it Is and How it Evolves. New York: Free Press.
  • Arthur W.B. (2010a). Exploitive Behavior in Policy Systems. Mss., IBM Almaden.
  • Arthur W.B. (2010b). Complexity, the Santa Fe Approach, and Nonequilibrium Economics // Hist. Econ. Ideas, vol. 18, no. 2, pp. 149–166.
  • Axtell R. (2007). What Economic Agents Do: How Cognition and Interaction Lead to Emergence and Complexity // Rev. Austrian Econ., vol. 20, pp. 105–122.
  • Bailey J. (2010). Emerge: The Data-Rich Mathematical Infinitesimals of Life. MAPematics.
  • Beinhocker E. (2006). The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics, Cambridge, Ma.: Harvard Business School Press.
  • Beinhocker E. (2011). Evolution as Computation: Integrating Self-Organization with Generalized Darwinism // J. Inst. Econ., vol. 7, no. 3, pp. 393–423.
  • Blaug M. (2003). The Formalist Revolution of the 1950s // J. History of Economic Thought, vol. 25, no. 2, pp. 145–156.
  • Blume L. and Durlauf S. (2006). The Economy as an Evolving Complex System III. NY: Oxford U. Press.
  • Brock W.A., Lakonishok J. and LeBaron B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns // Journal of Finance, vol. 47, pp. 1731–1764.
  • Bronk R. (2009). The Romantic Economist: Imagination in Economics. UK, Cambridge: Cambridge U. Press.
  • Bronk R. (2013). Epistemological Difficulties with Neoclassical Economics // Rev. Austrian Economics, forthcoming.
  • Cassidy J. (2009). How Markets Fail: the Logic of Economic Calamities. NY: Farrar, Straus and Giroux.
  • Chaitin G. (2006). Meta Math! The Quest for Omega. NY: Vintage Books.
  • Chaitin G. (2012). Proving Darwin: Making Biology Mathematical. NY: Pantheon Books.
  • Colander D. and Kupers R. (2012). Laissez-Faire Activism: The Complexity Frame for Policy. Princeton.
  • Colander D. (ed.) (2000). The Complexity Vision and the Teaching of Economics, UK, Cheltenham: E. Elgar.
  • Colander D., Goldberg M., Haas A., Juselius K., Lux T., Föllmer H., Kirman A. and Sloth B. (2009). The Financial Crisis and the Systemic Failure of the Economics Profession // Critical Rev., vol. 21, no. 2.
  • Davis J. (2008). The Turn in Recent Economics and Return of Orthodoxy // Cambridge J. Econ., vol. 32, pp. 349–366.
  • Dopfer K. (2007). The Pillars of Schumpeter’s Economics: Micro, Meso, Macro / In: Hanusch H. and Pyka A. (eds.) Elgar Companion to Neo-Schumpeterian Economics. UK, Cheltenham: E. Elgar.
  • Elsner W. and Heinrich T. (2009). A Simple Theory of «Meso»: on the Co-evolution of Institutions and Platform Size // Journal of Socio-Economics, vol. 38, pp. 843–858.
  • Epstein J. (2006a). Generative Social Science. Princeton, NJ: Princeton Univ. Press.
  • Epstein J. (2006b). Remarks on the Foundations of Agent-based Generative Social Science / In: Tesfatsion and Judd, op. cit. (below).
  • Farmer J.D. and Geanakoplos J. (2008). The Virtues and Vices of Equilibrium and the Future of Financial Economics // Complexity, vol. 14, no. 8, pp. 11–38.
  • Farmer J.D. (2012). Economics Needs to Treat the Economy as a Complex System. Mss.
  • Fontana M. (2010). Can Neoclassical Economics handle Complexity? The Fallacy of the Oil Spot Dynamic // J. Economic Behavior & Organization, vol. 76, pp. 584–596.
  • Fontana M. (2010). The Santa Fe Perspective on Economics // Hist. Econ. Ideas, vol. 18, no. 2, pp. 167–196.
  • Galla T. and Farmer J.D. (2012). Complex Dynamics in Learning Complicated Games. Mss.
  • Haldane A.G. (2009). Rethinking the Financial Network // Speech at Financial Student Assoc., Amsterdam. Bank of England.
  • Harris D.J. (2003). Joan Robinson on «History versus Equilibrium» // J. Robinson Centennial Conference, Burlington, Vt.
  • Hildago C.A. and Hausmann R. (2009). The Building Blocks of Economic Complexity // Proc. Nat. Acad. Sci., vol. 106, no. 26, pp. 10570–10575.
  • Holland J., Holyoak K., Nisbett R. and Thagard P. (1986). Induction. Cambridge, Ma.: MIT Press.
  • Holt R., Rosser J. and Colander D. (2010). The Complexity Era in Economics. Middlebury College.
  • Hommes C.H. (2009). Bounded Rationality and Learning in Complex Markets / In: Rosser J.B., op. cit. below.
  • Judd K. (2006). Computationally Intensive Analyses in Economics / In: Tesfatsion and Judd, op. cit. below.
  • Keynes J.M. (1937). The General Theory of Employment // Quarterly Journal of Economics, vol. 51, pp. 209–233.
  • Kirman A. (2011). Complex Economics. NY: Routledge.
  • Kirman A. (2010). The Economic Crisis is a Crisis for Economic Theory // CESifo Economic Studies, vol. 56, no. 4, pp. 498–535.
  • Kopel M. (2009). Oligopoly Dynamics / In: Rosser, J.B., op. cit. below.
  • Koppl R. and Luther W. (2010). BRACE for a new Interventionist Economics. Fairleigh Dickinson U.
  • Krugman P. (2009). How did Economists Get it so Wrong? // NY Times, September 6.
  • Lane D., Pumain D., Leeuw S., van der and West G. (eds.) (2009). Complexity Perspectives in Innovation and Social Change. Berlin: Springer.
  • LeBaron B., Arthur W.B., and Palmer R. (1999). Time Series Properties of an Artificial Stock Market // Journal of Econ. Dynamics and Control, vol. 23, pp. 1487–1516.
  • Lindgren K. (1991). Evolutionary Phenomena in Simple Dynamics / In: Langton C., Taylor C., Farmer J.D. and Rasmussen S. (eds.) Artificial Life II. Reading, MA, Addison-Wesley.
  • Louça F. (2010). Bounded Heresies. Early Intuitions of Complexity in Economics // Hist. Econ. Ideas, vol. 18, no. 2, pp. 77–113.
  • May R., Levin S. and Sugihara G. (2008). Complex Systems: Ecology for Bankers // Nature, vol. 451, pp. 893–895.
  • Miller J. and Page S. (2007). Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton, NJ: Princeton U. Press.
  • Mirowski P. (2002). Machine Dreams: Economics Becomes a Cyborg Science. UK: Cambridge U. Press.
  • Newman M., Barabasi A-L. and Watts D. (eds.) (2006). The Structure and Dynamics of Networks. Princeton.
  • North D. (1981). Structure and Change in Economic Theory. NY: Norton.
  • Palmer R.G., Arthur W.B., Holland J., LeBaron B. and Tayler P. (1994). Artificial Economic Life: A Simple Model of a Stock market // Physica D, vol. 75, pp. 264-274.
  • Perez C. (2002). Technological Revolutions and Financial Capital. UK, Cheltenham: E. Elgar.
  • Reisman D. (2004). Schumpeter’s Market: Enterprise and Evolution. UK, Cheltenham: E. Elgar.
  • Robinson J. (1980). Time in Economic Theory // Kyklos, vol. 33, no. 2, pp. 219–29.
  • Robinson J. (1973). What has Become of the Keynesian Revolution? / In: Robinson J. (ed.) After Keynes. Oxford: Basil Blackwell.
  • Robertson D.S. (2003). Phase Change: the Computer Revolution in Science and Mathematics. NY: Oxford.
  • Rosser J.B. (1999). On the Complexities of Complex Economic Dynamics // J. Econ Perspectives, vol. 13, no. 4.
  • Rosser J.B. (ed.) (2009). Handbook of Research on Complexity. UK, Cheltenham: E. Elgar.
  • Samuelson P.A. (1983). Foundations of Economic Analysis. Cambridge, MA, Harvard (originally 1947).
  • Sargent T.J. (1993). Bounded Rationality in Macroeconomics. Oxford: Clarendon Press.
  • Scheffer M., Carpenter S., Lenton T., Bascompte J., Brock W., Dakos V., Koppel J., van de, Leemput I.,van de, Levin S., Nes E., van, Pascual M. and Vandermeer J. (2012). Anticipating Critical Transitions // Science, vol. 338, 19 Oct.
  • Schumpeter J.A. (1908). Das Wesen und der Hauptinhalt der theoretischen Nationalökonomie. Leipzig: Dunker & Humbolt.
  • Schumpeter J.A. (1961). The Theory of Economic Development (1912). London: Oxford Univ. Press.
  • Schumpeter J.A. (1954). History of Economic Analysis. London: Allen and Unwin.
  • Shackle G.L.S. (1955). Uncertainty in Economics. UK: Cambridge, Cambridge U. Press.
  • Shackle G.L.S. (1992). Epistemics and Economics. Transaction Publishers.
  • Simpson D. (2002). Rethinking Economic Behaviour. NY: St. Martin’s Press.
  • Smolin L. (2009). Time and Symmetry in Models of Economic Markets (http://arxiv.org/abs/0902.4274).
  • Smolin L. (2013). Time Reborn. NY: Houghton Mifflin Harcourt.
  • Solow R. (1957). Technical Change and the Aggregate Production Function // Rev. Economics and Statistics, vol. 39, pp. 312–320.
  • Soros G. (1987). The Alchemy of Finance. NY: Simon & Schuster.
  • Tabb W. (1999). Reconstructing Political Economy. NY: Routledge.
  • Tesfatsion L. and Judd K.L. (eds.) (2006). Handbook of Computational Economics: Vol. 2. Agentbased Computational Economics. NY: North-Holland Elsevier.
  • Tesfatsion L. (2006). Agent-Based Computational Economics: A Constructive Approach to Economic Theory / In: Tesfatsion and Judd, op. cit., 2006.
  • Turing A.M. (1936). On Computable Numbers, with an Application to the Entscheidungsproblem // Proc. London Math. Society, Series 2, vol. 42, pp. 230–265.
  • Waldrop M. (1992). Complexity. NY: Simon & Schuster.
  • Watts D. (2002). A Simple Model of Global Cascades on Random Networks // PNAS, vol. 9, pp. 5766–5771.
  • Wolfram S. (2002). A New Kind of Science. Champaign, Il.: Wolfram Media.
Publisher: Southern Federal University
Founder: Southern Federal University
ISSN: 2073-6606