ЮФУ
ул. М. Горького, 88, к. 211
г.Ростов-на-Дону, Россия
344002
+7 (863) 250-59-54
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

УПРАВЛЕНИЕ БЕЗ ИЗМЕРЕНИЙ

TERRA ECONOMICUS, , Том 17 (номер 3),
Цитирование: Тамбовцев, В. Л. (2019). Управление без измерений // Terra Economicus, 17(3), 6–29. DOI: 10.23683/2073-6606-2019-17-3-6-29

Характерной чертой реформ, которые проведены за последние десятилетия в секторе публичных услуг во многих странах, является использование в управлении принципов, перенесенных из сферы бизнеса. Эти реформы известны под общим названием «Новый государственный менеджмент». Одним из их ключевых признаков является установление организациям, оказывающим публичные услуги, количественных заданий и увязка вознаграждений работникам с уровнями исполнения этих заданий. В мировой литературе за эти годы опубликованы результаты большого числа эмпирических исследований последствий таких реформ, демонстрирующих их негативное влияние на качество предоставляемых услуг и стимулы работников. Между тем ситуация не меняется, поскольку руководители ведомств утверждают, что без установления количественных заданий невозможно управлять развитием их отраслей. В статье анализируется корректность таких утверждений. Дается краткая характеристика положений современной (репрезентационной) теории измерения, показывается, что субъективные суждения являются не только «полноправной» разновидностью измерений, но и неотъемлемой частью любых ситуаций принятия решения. Обосновывается различие заданий в коммерческих организациях (фирмах) и некоммерческих организациях, оказывающих публичные услуги. Первые имеют естественную метрику – деньги, а их величины устанавливаются исходя из критерия максимизации прибыли фирмы. Вторые не имеют естественной метрики и ясных критериев установления, в силу чего являются результатами субъективных суждений руководителей отраслей, облеченными в цифровую форму, т.е. иллюзиями количеств. Работники, стремясь выполнить такие задания, фактически работают на показатель, что и приводит к негативным последствиям для качества предоставляемых публичных услуг.


Ключевые слова: измерения; шкалы; суждения; задания; работа на показатель

Список литературы:
  • Крупина, С. М., & Клочков, В. В. (2014). Перспективы российской фундаментальной на-
    уки в условиях институциональных реформ: моделирование и качественные выво-
    ды, с. 11–24 / В: Материалы 17-х Друкеровских чтений «Инновационные перспек-
    тивы России и мира: теория и моделирование» (Москва, 2014). Новочеркасск:
    ЮРГТУ (НПИ).
  • Родинков, О. В., Бокач, Н. А., &Булатов, А. В. (2010). Основы метрологии физико-хими-
    ческих измерений и химического анализа: Учебно-методическое пособие. СПб.: ВВМ.
  • Снежко, А. А., Захарова, Н. В., & Жирнова, Е. А. (2008). Общая теория измерений: Учеб.
    пособие. Красноярск: Сибирский государственный аэрокосмический университет.
  • Тамбовцев, В. Л. (2018). Категория доверия в исследованиях менеджмента // Россий-
    ский журнал менеджмента, 16(4), 577–600.
  • Шишкин, И. Ф. (1990). Метрология, стандартизация и управление качеством: Учеб.
    для вузов. М.: Изд-во стандартов.
  • Abadie, M., & Waroquier, L. (2019). Evaluating the Benefits of Conscious and Unconscious
    Thought in Complex Decision Making // Policy Insights from the Behavioral and Brain
    Sciences, 6(1), 72–78.
  • Abatecola, G., Caputo, A., & Cristofaro, M. (2018). Reviewing cognitive distortions in managerial
    decision making: Toward an integrative co-evolutionary framework // Journal of
    Management Development, 37(5), 409–424.
  • Baesler, E. J. (1997). Persuasive effects of story and statistical evidence // Argumentation
    & Advocacy, 33(4), 170–175.
  • Barnes, J. H. (1984). Cognitive biases and their impact on strategic planning // Strategic
    Management Journal, 5(2), 129–137.
  • Basel, J. S., & Brühl, R. (2013). Rationality and dual process models of reasoning in managerial
    cognition and decision making // European Management Journal, 31(6), 745–754.
  • Bazerman, M. (2010). Judgment in managerial decision making. New York: Jon Wiley and Sons.
  • Behn, R. D. (2003). Why Measure Performance? Different Purposes Require Different Measures
  • // Public Administration Review, 63(5), 586–606.
  • Benabou, R., & Tirole, J. (2003). Intrinsic and extrinsic motivation // Review of Economic
    Studies, 70(3), 489–520.
  • Benoit, E., & Foulloy, L. (2013). The role of fuzzy scales in measurement theory // Measurement,
    46(8), 2921–2926.
  • Bevan, G., & Hood, C. (2006). What’s measured is what matters: targets and gaming in the
    English public health care system // Public Administration, 84(3), 517–538.
  • Blastland, M., & Dilnot, A. (2009). The Numbers Game: The Commonsense Guide to Understanding
    Numbers in the News, in Politics, and in Life. London: Penguin.
  • Bogsnes, B. (2018). Hitting the Target but Missing the Point // Controlling & Management
    Review, 62(5), 8–13.
  • Bolli, T., & Somogyi, F. (2011). Do competitively acquired funds induce universities to increase
    productivity? // Research Policy, 40(1), 136–147.
  • Bornmann, L., & Daniel, H.-D. (2008). What do citation counts measure? A review
    of studies on citing behavior // Journal of Documentation, 64(1), 45–80. DOI:
    10.1108/00220410810844150.
  • Busenitz, L. W., & Barney, J. B. (1994). Biases and heuristics in strategic decision making:
    Differences between entrepreneurs and managers in large organizations // Academy of
    Management Proceedings, (1), 85–89.
  • Conger, J. A., & Kanungo, R. N. (1988). The Empowerment Process: Integrating Theory and
    Practice // Academy of Management Review, 13(3), 471–482.
  • Costello, F., & Watts, P. (2014). Surprisingly Rational: Probability Theory Plus Noise Explains
    Biases in Judgment // Psychological Review, 121(3), 463–480.
  • Crane, A., Matten, D., & Moon, J. (2008). The Emergence of Corporate Citizenship: Historical
    Development and Alternative Perspectives, pp. 25–49 / In: A. Scherer & G. Palazzo (eds.)
    Handbook of Research on Global Corporate Citizenship. Cheltenham: Edward Elgar.
  • Curtis, I. (2015). The use of targets in policing. (https://www.gov.uk/ government/uploads/
    system/uploads/attachmentdata/file/466058/ReviewT argets2015.pdf).
    de Graaf, A., Hoeken, H., Sanders, J., & Beentjes, J. W. J. (2012). Identification as a Mechanism
    of Narrative Persuasion // Communication Research, 39(6), 802–823.
  • Diefenbach, T. (2009). New public management in public sector organizations: the dark
    sides of managerialistic ‘enlightenment’ // Public Administration, 87(4), 892–909.
  • Dobija, D., Górska, A. M., Grossi, G., & Strzelczyk, W. (2019). Rational and symbolic uses of
    performance measurement: Experiences from Polish universities // Accounting, Auditing
    & Accountability Journal, 32(3), 750–781. DOI: 10.1108/AAAJ-08-2017-3106.
  • Elbow, P. (1993). Ranking, Evaluating, and Liking: Sorting out Three Forms of Judgment //
    College English, 55(2), 187–206.
  • Finkelstein, L. (2003). Widely, strongly and weakly defined measurement // Measurement,
    34(1), 39–48. DOI: 10.1016/S0263-2241(03)00018-6.
  • Fonseca, M. A., & Peters, K. (2018). Will any gossip do? Gossip does not need to be perfectly
    accurate to promote trust // Games and Economic Behavior, 107, 253–281.
  • Fulford, M. D., & Enz, C. A. (1995). The Impact of Empowerment on Service Employees //
    Journal of Managerial Issues, 7(2), 161–175.
  • Funder, D. C. (1987). Errors and Mistakes: Evaluating the Accuracy of Social Judgment //
    Psychological Bulletin, 101(1), 75–90.
  • Funder, D. C. (1995). On the Accuracy of Personality Judgment: A Realistic Approach //
    Psychological Review, 102(4), 652–670.
  • Funder, D. C. (2012). Accurate Personality Judgment // Current Directions in Psychological
    Science, 21(3), 177–182.
  • Gigerenzer, G. (2015). Simply rational: Decision making in the real world. New York: Oxford
    University Press.
  • Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making // Annual Review of
    Psychology, 62, 451–482.
  • Glänzel, W. (2008). Seven Myths in Bibliometrics: About facts and fiction in quantitative
    science studies // COLLNET Journal of Scientometrics and Information Management,
    2(1), 9–17.
  • Gruening, G. (2001). Origin and theoretical basis of New Public Management // International
    Public Management Journal, 4(1), 1–25.
  • Hammond, K. R. (1996). Human judgment and social policy: Irreducible uncertainty, inevitable
    error, unavoidable injustice. New York: Oxford University Press.
  • Heerkens, H., Norde, C., & van der Heijden, B. (2011). Importance assessment of decision
    attributes: A qualitative study comparing experts and laypersons // Management Decision,
    49(5), 748–761.
  • Heffernan, T. A., & Heffernan, A. (2018). Language games: University responses to ranking
    metrics // Higher Education Quarterly, 72(1), 29–39.
  • Higher Education Research Institute (2007). College Rankings and College Choice: How Important
    Are College Rankings in Students’ College Choice Process? HERI Research Brief. August.
  • Hodgkinson, G. P., Langan-Fox, J., & Sadler-Smith, E. (2008). Intuition: A fundamental bridging
    construct in the behavioural sciences // British Journal of Psychology, 99(1), 1–27.
  • Hoeken, H., Kolthoff, M., & Sanders, J. (2016). Story Perspective and Character Similarity as
    Drivers of Identification and Narrative Persuasion // Human Communication Research,
    42(2), 292–311. DOI: 10.1111/hcre.12076.
  • Hoffmann, J. A., Gaissmaier, W., & von Helversen, B. (2017). Justifying the judgment process
    affects neither judgment accuracy, nor strategy use // Judgment and Decision
    Making, 12(6), 627–641.
  • Holmstrom, B., & Milgrom, P. (1991). Multitask principal-agent analyses: incentive contracts,
    asset ownership, and job design // Journal of Law, Economics, and Organization,
    7 (Spec. Is.), 24–52.
  • Hood, C. (2006).Gaming in targetworld: The targets approach to managing British
    public services // Public Administration Review, 66(4), 515–521. DOI: 10.1017/
    S0140525X1500062X.
  • Johnson, M. D., & Puto, C. P. (1987). A review of consumer judgment and choice, pp. 236–
    292 / In: M. J. Houston. Review of marketing, 1987. Chicago: American Marketing Association.
    (https://scholarship.sha.cornell.edu/cgi/viewcontent.cgi?referer=https://
    scholar.google.com/&httpsredir=1&article=1434&context=articles).
  • Jussim, L. (2017). Précis of Social Perception and Social Reality: Why accuracy dominates
    bias and self-fulfilling prophecy // Behavioral and Brain Sciences, 40, e1, e1-e20. DOI:
    10.1017/S0140525X1500062X.
  • Kahneman, D. (2003). Maps of bounded rationality: a perspective on intuitive judgment
    and choice, pp. 449–89 / In: T. Frangsmyr (ed.) Les Prix Nobel: The Nobel Prizes, 2002.
    Stockholm: Nobel Found.
  • Kahneman, D. X, & Tversky, A. (1973). On the psychology of prediction // Psychological
    Review, 80(4), 237–251.
  • Kaplan, R. S., & Norton, D. P. (1992). The Balanced Scorecard: Measures that Drive Performance
    // Harvard Business Review, 70(1), 71–79.
  • Keren, G. (1990). Cognitive aids and debiasing methods: Can cognitive pills cure cognitive
    ills? pp. 523–552 / In: J. P. Caverni, J. M. Fabre & M. Gonzales (eds.) Cognitive biases.
    New York: Elsevier.
  • Kerr, S. (1975). On the folly of rewarding A, while hoping for B // Academy of Management
    Journal, 18(4), 769–783.
  • Koetsenruijter, A. M. (2011). Using numbers in news increases story credibility // Newspaper
    Research Journal, 32(2), 74–82.
  • Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns
    and predict real-life outcomes // Psychological Methods, 21(4), 493–506.
  • Kruglanski, A. W., & Gigerenzer, G. (2011). Intuitive and Deliberate Judgments Are Based
    on Common Principles // Psychological Review, 118(1), 97–109.
  • Larsen, B. (2001). “One measurement is better than 1,000 opinions”: is it? // Managerial
    Auditing Journal, 16(2), 63–68. DOI: 10.1108/02686900110363618.
  • Laurie, R. S. and Rosati, A. G. (2015).The Evolutionary Roots of Human Decision Making //
    Annual Review of Psychology, 66, 321–47.
  • Lawrence, M., Goodwin, P., O’Connor, M., & Önkal, D. (2006). Judgmental forecasting: A review
    of progress over the last 25 years // International Journal of Forecasting, 22(3), 493–518.
  • Maldonato, M., Dell’Orco, S., & Sperandeo, R. (2018). When Intuitive Decisions Making,
    Based on Expertise, May Deliver Better Results than a Rational, Deliberate Approach,
    pp. 369–377 / In: A. Esposito, M. Faudez-Zanuy, F. Morabito & E. Pasero (eds.) Multidisciplinary
    Approaches to Neural Computing. Cham: Springer.
  • Mari, L. P. (2005). Models of the Measurement Process, pp. 681–684 / In: P. Sydenham &
    R. Thorn (eds.) Handbook of Measuring System Design. Chichester: John Wiley & Sons.
    Mitchell, D., Bryson, J. J., Rauwolf, P., & Ingram, G. P. (2016). On the reliability of unreliable
    information: Gossip as cultural memory // Interaction Studies, 17(1), 1–25.
  • Morewedge, C. K., Yoon, H., Scopelliti, I., Symborski, C. W., Korris, J. H., & Kassam, K. S.
    (2015). Debiasing Decisions: Improved Decision Making With a Single Training Intervention
    // Policy Insights from the Behavioral and Brain Sciences, 2(1), 129–140.
  • Moynihan, D. P., & Pandey, S. K. (2010). The Big Question for Performance Management:
    Why Do Managers Use Performance Information? // Journal of Public Administration
    Research and Theory, 20(4), 849–866.
  • Nisbett, R., & Ross, L. (1980). Human Inference: Strategies and Shortcomings of Social Judgment.
    Englewood Cliffs, NJ: Prentice-Hall.
  • Pendrill, L., & Petersson, N. (2016). Metrology of human-based and other qualitative measurements
    // Measurement Science and Technology, 27(9), article 094003. (https://iopscience.
    iop.org/article/10.1088/0957-0233/27/9/094003/meta).
  • Pierce, J. L., Kostova, T., & Dirks, K. T. (2001). Toward a Theory of Psychological Ownership
    in Organizations // Academy of Management Review, 26(2), 298–310.
  • Porter, T. M. (1995). Trust in numbers: the pursuit of objectivity in science and public life.
    Princeton: Princeton University Press.
  • Propper, C., & Wilson, D. (2003). The Use and Usefulness of Performance Measures in the
    Public Sector // Oxford Review of Economic Policy, 19(2), 250–267.
  • Prusak, L. (2010). What can’t be measured // Harvard Business Review Blog, 7 October.
    (https://hbr.org/2010/10/what-cant-be-measured).
  • Pugalis, L. (2013). Hitting the target but missing the point: the case of area-based regeneration
    // Community Development, 44(5), 617–634.
  • Radnor, Z. (2008). Hitting the Target and Missing the Point? Developing an Understanding
    of Organizational Gaming, pp. 94–105 / In: W. Van Dooren & S. Van de Walle (eds.)
    Performance Information in the Public Sector. London: Palgrave Macmillan.
  • Rauhvargers, A. (2014). Where Are the Global Rankings Leading Us? An Analysis of Recent
    Methodological Changes and New Developments // European Journal of Education,
    49(1), 29–44.
  • Rauwolf, P. (2016). Understanding the ubiquity of self-deception: the evolutionary utility of
    incorrect information. PhD Thesis. University of Bath. (https://core.ac.uk/download/
    pdf/42511326.pdf).
  • Rauwolf, P., Mitchell, D., & Bryson, J. J. (2015). Value homophily benefits cooperation but
    motivates employing incorrect social information // Journal of Theoretical Biology,
    367, 246–261.
  • Reisen, N., Hoffrage, U., & Mast, F. W. (2008). Identifying decision strategies in a consumer
    choice situation // Judgment and Decision Making, 3(8), 641–658
  • Rock, A. (2004). The mind at night: The new science of how and why we dream. Cambridge,
    MA: Basic Books.
  • Ross, L. (1977). The intuitive psychologist and his shortcomings, pp. 174–214 / In: L.
    Berkowitz (ed.) Advances in experimental social psychology, vol. 10. New York: Academic
    Press.
  • Rusou, Z., Zakay, D., & Usher, M. (2013). Pitting intuitive and analytical thinking against
    each other: The case of transitivity // Psychonomic Bulletin & Review, 20(3), 608–614.
  • Sacco, D. F., & Brown, M. (2018). The face of personality: Adaptive inferences from facial
    cues are moderated by perceiver personality and motives // Social and Personality Psychology
    Compass, 12(8), e12410. DOI: 10.1111/spc3.12410.
  • Sanger, M. B. (2013). Does measuring performance lead to better performance? // Journal
    of Policy Analysis and Management, 32(1), 185–203.
  • Schapiro, A., & Turk-Browne, N. (2015). Statistical Learning, pp. 501–506 / In: A. W. Toga
    (ed.) Brain Mapping: An Encyclopedic Reference, vol. 3. Elsevier.
  • Schwenk, C. R. (1985). Management illusions and biases: Their impact on strategic decisions
    // Long Range Planning, 18(5), 74–80.
  • Shoaib, S., & Mujtaba, B. G. (2018). Perverse Incentives and Peccable Behavior in Professionals:
    A Qualitative Study of the Faculty // Public Organization Review, 18(4), 441–459.
  • Siegelman, N., Bogaerts, L., & Frost, R. (2016). Measuring individual differences in statistical
    learning: Current pitfalls and possible solutions // Behavior Research Methods,
    49(2), 418–432. DOI: 10.3758/s13428-016-0719-z.
  • Sinclair, M., & Ashkanasy, N. M. (2002). Intuitive decision-making amongst leaders: More
    than just shooting from the hip // Mt Eliza Business Review, 5 (2), 32–40.
  • Stevens, S. S. (1946). On the Theory of Scales of Measurement // Science, 103(2684), 677–
    680. DOI: 10.1126/science.103.2684.677.
  • Strack, F., & Deutsch, R. (2004). Reflective and Impulsive Determinants of Social Behavior //
    Personality and Social Psychology Review, 8(3), 220–247.
  • Summers, B., & Duxbury, D. (2012). Decision-dependent emotions and behavioral anomalies
    // Organizational Behavior and Human Decision Processes, 118(2), 226–238.
  • Suppes, P., & Zinnes, J. (1963). Basic Measurement Theory, pp. 3–76 / In: D. Luce,
    R. R. Bush & E. Galanter (eds.) Handbook of Mathematical Psychology, vol. 1. Chichester:
    John Wiley & Sons. [Рус. изд.: Суппес, П., & Зиннес, Дж. (1967). Основы теории
    измерений, с. 9–110 / В кн.: Л. Д. Мешалкин (ред.) Психологические измерения.
    Москва: Мир.]
  • Tang, T. L. P., Tollison, P. S., & Whiteside, H. D. (1987). The effect of quality circle initiation
    on motivation to attend quality circle meetings and on task performance // Personnel
    Psychology, 40(4), 799–814.
  • Todorov, A., Pakrashi, M., & Oosterhof, N. N. (2009). Evaluating faces on trustworthiness
    after minimal time exposure // Social Cognition, 27(6), 813–833.
  • Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural Evidence of
    Statistical Learning: Efficient Detection of Visual Regularities Without Awareness //
    Journal of Cognitive Neuroscience, 21(10), 1934–1945.
  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases //
    Science, 185(4157), 1124–1131.
  • Verbeeten, F. H. M. (2008). Performance management practices in public sector organizations:
    Impact on performance // Accounting, Auditing & Accountability Journal, 21(3), 427–454.
  • Yetiv, S. A. (2013). National Security through a Cockeyed Lens: How Cognitive Bias Impacts
    U.S. Foreign Policy. Baltimore, MD: Johns Hopkins University Press.
  • Youyou, W., Kosinski, M., & Stillwell, D. J. (2015). Computer-based personality judgments
    are more accurate than those made by humans // Proceedings of the National Academy
    of Sciences of the USA, 112(4), 1036–1040. DOI: 10.1073/pnas.1418680112.
Издатель: Южный Федеральный Университет
Учредитель: Южный федеральный университет
ISSN: 2073-6606