SFeDu
  • Home
  • Issues
  • 2021
  • No 3
  • Predicting the unemployment rate: Analyzing statistics on search engine query

Predicting the unemployment rate: Analyzing statistics on search engine query


TERRA ECONOMICUS, , Vol. 19 (no. 3),

Unemployment is one of the key macroeconomic indicators that play a significant role in the state economic policy. There is a significant variety of methods for forecasting the situation on the labor market and the unemployment rate. We show the evolution of relevant approaches, including traditional methods (labor balance model, structural changes in regional labor markets, multifactorial labor market models such as ARIMA, TAR, ARNN) and modern ones. The development and the possibility of applying innovative approaches to forecasting unemployment is associated with digitalization and the development of Internet technologies, which provide researchers with new analysis tools. When compared to traditional methods, Google search query data and other internet activity data result in better forecasts, helping to solve the problem of lagging data provided by the official statistics, and adding relevant information to analyze and predict unemployment. Based on the experience of using the statistics of search queries in predicting and nowcasting the unemployment rate, the authors developed several models for predicting the unemployment rate in Russia. The research findings show that adding multiple query variables to the autoregressive model is able to improve the predictive accuracy of the model. Superiority of the hybrid model over the autoregressive variation is due to its ability to respond to future labor market shocks.
Citation: Yurevich M.A., Akhmadeev D.R. (2021). Predicting the unemployment rate: Analyzing statistics on search engine query. Terra Economicus 19(3): 53–64. DOI: 10.18522/2073-6606-2021-19- 3-53-64
Acknowledgment: The research was carried out with the support of the Scientific Foundation of the Financial University, project “Forecasting of macroeconomic indicators based on the analysis of query statistics in search engines”.


Keywords: unemployment rate; labor market; queries; Google Trends; Big Data

JEL codes: J64, D8, C22, C55

References:
  • Коровкин А.Г. (2001). Динамика занятости и рынка труда: вопросы макроэкономического анализа и прогнозирования. М.: МАКСПресс. [Korovkin A.G. (2001). Dynamics of Employment and Labor Market: Issues of Macroeconomic Analysis and Forecasting. Moscow: MAX Press (in Russian)].
  • Коровкин А.Г., Полежаев А.В., Андрюнин А.В. (2002). Структурные изменения и взаимодействия региональных рынков труда: методы и анализ // Проблемы прогнозирования (4): 134–138. [Korovkin A.G., Polezhaev A.V., Andryunin A.V. (2002). Structural changes and interactions of regional labor markets: Methods and analysis. Problems of Forecasting (4): 134–138 (in Russian)].
  • Петрова Д.А. (2019). Прогнозирование инфляции на основе интернет-запросов // Экономическое развитие России 26(11): 55–61 [Petrova D.A. (2019). Inflation forecasting based on Internet requests. Economic Development of Russia 26(11): 55–61 (in Russian)].
  • Юревич М.А., Екимова Н.А., Балацкий Е.В. (2020). Цифровая трансформация экономической науки // Информационное общество (2): 39–47. [Yurevich M.A., Ekimova N.A., Balatsky E.V. (2020). Digital transformation of economic science. Information society (2): 39–47 (in Russian)].
  • Anvik C., Gjelstad K. (2010). Just Google it. Forecasting Norwegian unemployment figures with web queries. Working Paper 11. Oslo: Center for Research in Economics and Management.
  • Askitas N., Zimmermann K.F. (2009). Google econometrics and unemployment forecasting. Appl. Econ. Q. 55(2): 107–120.
  • Barnes M., Chahrour R., Olivei G., Tang G. (2007). A principal components approach to estimating labor market pressure and its implications for inflation. Federal Reserve Bank of Boston Public Policy Brief 07-2: 1–23.
  • Chadwick M.G., Sengul G. (2015). Nowcasting the unemployment rate in Turkey: Let?s ask google. Central Bank Review 15(3): 15.
  • Chakraborty T., Chakraborty A.K., Biswas M., Banerjee S., Bhattacharya S. (2021). Unemployment rate forecasting: A hybrid approach. Computational Economics 57: 183–201.
  • Choi H., Varian H. (2012). Predicting the present with google trends. Econ. Rec. 88(s1): 2–9.
  • D?Amuri F. (2009). Predicting Unemployment in Short Samples with Internet Job Search Query Data. Germany: University Library of Munich.
  • Dumicic K., CehCasni A., Zmuk B. (2015). Forecasting unemployment rate in selected European countries using smoothing methods. World Academy of Science, Engineering and Technology: International Journal of Social, Education, Economics and Management Engineering 9(4): 867–872.
  • Edlund P.O., Karlsson S. (1993). Forecasting the Swedish unemployment rate var vs. transfer function modeling. International Journal of Forecasting 9(1): 61–76.
  • Ettredge M., Gerdes J., Karuga G. (2005). Using web-based search data to predict macroeconomic statistics. Communications of the ACM 48(11): 87–92.
  • Faraway J., Chatfeld C. (1998). Time series forecasting with neural networks: A comparative study using the air line data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 47(2): 231–250.
  • Feuerriegel S., Gordon J. (2019). News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. European Journal of Operational Research 272(1): 162–175.
  • Fondeur Y., Karame F. (2013). Can google data help predict French youth unemployment? Econ. Modell. 30: 117–125.
  • Gonzalez-Fernandez M., Gonzalez-Velasco C. (2018). Can Google econometrics predict unemployment? Evidence from Spain. Economics Letters 170: 42–45.
  • Khan Jafur Z.R., Sookia N.U.H., NunkooGonpot P., Seetanah B. (2017). Out-of-sample forecasting of the Canadian unemployment rates using univariate models. Applied Economics Letters 24(15): 1097–1101.
  • Kreiner A., Duca J. (2020). Can machine learning on economic data better forecast the unemployment rate? Applied Economics Letters 27(17): 1434–1437.
  • Lasso F., Snijders S. (2016). The power of Google search data; an alternative approach to the measurement of unemployment in Brazil. Student Undergraduate Research E-journal! (2).
  • McLaren N., Shanbhogue R. (2011). Using internet search data as economic indicators. Bank of England Quarterly Bulletin (Q2).
  • Montgomery A.L., Zarnowitz V., Tsay R.S., Tiao G.C. (1998). Forecasting the us unemployment rate. Journal of the American Statistical Association 93(442): 478–493.
  • Naccarato A., Pierini A., Falorsi S. (2015). Using Google trend data to predict the Italian unemployment rate. Departmental Working Papers of Economics – University “Roma Tre” 0203. Department of Economics – University Roma Tre.
  • Nagao S., Takeda F., Tanaka R. (2019). Nowcasting of the U.S. unemployment rate using Google Trends. Finance Research Letters (30): 103–109.
  • Simionescu M. (2020). Improving unemployment rate forecasts at regional level in Romania using Google Trends. Technological Forecasting & Social Change 155(C).
  • Su Z. (2014). Chinese online unemployment-related searches and macroeconomic indicators. Frontiers of Economics in China 9(4): 573–605.
  • Suhoy T. (2009). Query indices and a 2008 downturn: Israeli data. Discussion Paper № 2009.06. Bank of Israel.
  • Zmitrowicz K., Khan M. (2014). Beyond the unemployment rate: Assessing Canadian and U.S. labor markets since the Great Recession. Bank of Canada Review Spring: 42–53.
Publisher: Southern Federal University
Founder: Southern Federal University
ISSN: 2073-6606