Elasticity of demand for forestry products in macro-regions of Russia: Models to forecast sector development
Anton I. Pyzhev
Siberian Federal University; Institute of Economics and Industrial Engineering, SB RAS, Krasnoyarsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Siberian Federal University; Institute of Economics and Industrial Engineering, SB RAS, Krasnoyarsk, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
TERRA ECONOMICUS, 2024, Vol. 22 (no. 1),
Forecasting the development of sectoral markets requires a comprehensive understanding of the relationship between product output and demand, both domestically and in foreign trade. This work aims to assess the demand elasticity for forestry products in Russia’s largest macro-regions, grouped according to the current administrative-territorial division into federal districts. Given the pronounced export orientation of production in the Russian timber industry, demand is modeled through production volume assuming that the market reaches partial equilibrium in the medium term. The coefficients of elasticity of demand for forest products by price and other economic parameters are estimated using quarterly data from 2010 to 2023, yielding statistically significant results. The estimates I obtained are primarily used in structural models of the Russian forest industry, with regional peculiarities taken into account. The case of sawn timber production dynamics in Siberian regions shows that the most favorable scenario for forest industry development is the outstripping growth of domestic demand for this type of product, driven by the growth of individual and multi-apartment housing construction. The implementation of these models is crucial for predicting industry development and creating a well-balanced timber industry policy. This is particularly important given the recent trade restrictions across the world.
Citation: Pyzhev A.I. (2024). Elasticity of demand for forestry products in macro-regions of Russia: Models to forecast sector development. Terra Economicus 22(1), 104–116 (in Russian). DOI: 10.18522/2073-6606-2024-22-1-104-116
Acknowledgment: The study was funded by the Russian Science Foundation grant № 19-18-00145. https://rscf.ru/en/project/19-18-00145/
Keywords: forest industry; forest economics; price elasticity of demand; forestry products; econometric modeling; retrospective analysis
JEL codes: Q23, N54, P25
References:
- Антонова Н. (2017). Трансформация лесного комплекса за годы российских реформ: дальневосточный срез. Пространственная экономика 3(51), 83–106. [Antonova, N. (2017). Transformation of the forest complex during the years of Russian reforms: a Far Eastern crosssection. Spatial Economics 3(51), 83–106 (in Russian)]. DOI: 10.14530/se.2017.3.083-106
- Баранов А., Павлов В., Тагаева Т., Слепенкова Ю. (2020). Опыт построения и использования межотраслевых региональных моделей эколого-экономического развития. Мир экономики и управления 20(3), 27–47. [Baranov, A., Pavlov, V., Tagayeva, T., Slepenkova, Y. (2020). Experience in building and using inter-sectoral regional models of ecological and economic development. World of Economics and Management 20(3), 27–47 (in Russian)].
- Блам Ю., Машкина Л. (2018). Построение иерархического набора моделей: от стоимостной ОМММ к отраслевой модели в натуральных показателях. Мир экономики и управления 18(4), 126–139. [Blam, Y., Mashkina, L. (2018). Building a hierarchical set of models: from a value-based OMMM to an in-kind industry model. World of Economics and Management 18(4), 126–139 (in Russian)]. DOI: 10.25205/2542-0429-2018-18-4-126-139
- Блам Ю., Машкина Л., Стойлова А. (2016). Об одном подходе к детализации народнохозяйственного прогноза развития отрасли (на примере лесного комплекса). Мир экономики и управления 16(4), 39–47. [Blam, Y., Mashkina, L., Stoilova, A. (2016). On one approach to the detailing of the national economic forecast of the industry development (on the example of the forest complex). World of Economics and Management 16(4), 39–47 (in Russian)].
- Вольчик В. (2022). Фундаментальные условия инновационного развития экономики. Journal of Economic Regulation 13(2), 6–21. [Volchik, V. (2022). Fundamental conditions of innovative development of the economy. Journal of Economic Regulation 13(2), 6–21 (in Russian)]. DOI: 10.17835/2078-5429.2022.13.2.006-021
- Глазырина И., Яковлева К., Жадина Н. (2015). Социально-экономическая эффективность лесопользования в регионах России. Регионалистика 2(5-6), 18–33. [Glazyrina, I., Yakovleva, K., Zhadina, N. (2015). Socio-economic efficiency of forest use in Russian regions. Regionalistika 2(5-6), 18–33 (in Russian)]. DOI: 10.14530/reg.2015.5–6
- Дианов С.В., Гулин К.А., Антонов М.Б., Ригин В.А. (2021). Агент-ориентированное моделирование регионального лесного комплекса. Вологда: ФГБУН ВолНЦ РАН. [Dianov, S., Gulin, K., Antonov, M., Rigin, V. (2021). Agent-based modeling of regional forest complex. Vologda: Vologda Scientific Centre RAS (in Russian)].
- Крюков В., Баранов А., Павлов В., Суслов В., Суслов Н. (2020). Проблемы развития единого комплекса средств макроэкономического межрегионального межотраслевого анализа и прогнозирования. Экономика региона 16(4), 1072–1086. [Kryukov, V., Baranov, A., Pavlov, V., Suslov, V., Suslov, N. (2020). Problems of development of a unified complex of means of macroeconomic interregional interindustry analysis and forecasting. Regional Economics 16(4), 1072–1086 (in Russian)]. DOI: 10.17059/ekon.reg.2020-4-5
- Петров В.Н., Каткова Т.Е., Карвинен С. (2019). Тенденции развития лесной экономики в России и Финляндии. Экономические и социальные перемены: факты, тенденции, прогноз 12(3), 140–157. [Petrov, V., Katkova, T., Karvinen, S. (2019). Trends in the development of forest economy in Russia and Finland. Economic and Social Changes: Facts, Trends, Forecast 12(3), 140–157 (in Russian)]. DOI: 10.15838/esc.2019.3.63.9
- Порфирьев Б.Н. (2020). Перспективы экономического роста. Вестник Российской академии наук 90(3), 243–250. [Porfiriev, B. (2020). Prospects for economic growth. Herald of the Russian Academy of Sciences 90(3), 243–250 (in Russian)]. DOI: 10.31857/S0869587320030159
- Поршаков А.С., Пономаренко А.А., Синяков А.А. (2016). Оценка и прогнозирование ВВП России с помощью динамической факторной модели. Журнал Новой экономической ассоциации(2), 60–76. [Porshakov, A., Ponomarenko, A., Sinyakov, A. (2016). Estimation and forecasting of Russiaʼs GDP using a dynamic factor model. Journal of the New Economic Association (2), 60–76 (in Russian)].
- Пыжев А. (2022). Лесной комплекс России за годы реформ: больше законов, но меньше порядка? Journal of Institutional Studies 14(3), 91–102. [Pyzhev, A. (2022). Russiaʼs forest complex in the years of reform: More laws but less order? Journal of Institutional Studies 14(3), 91–102 (in Russian)]. DOI: 10.17835/2076-6297.2022.14.3.091-102
- Рязанов В.А. (2023). Япония и Южная Корея как рынки для российских экспортеров древесных гранул. Вестник Института экономики Российской академии наук (1), 130–142. [Ryazanov, V. (2023). Japan and South Korea as markets for Russian exporters of wood pellets. Bulletin of the Institute of Economics of the Russian Academy of Sciences (1), 130–142 (in Russian)]. DOI: 10.52180/2073-6487_2023_1_130_142
- Широв А., Янтовский А. (2014). Межотраслевая макроэкономическая модель как ядро комплексных прогнозных расчетов. Проблемы прогнозирования (3), 18–31. [Shirov, A., Yantovsky, A. (2014). Inter-sectoral macroeconomic model as the core of complex forecast calculations. Problems of Forecasting (3), 18–31 (in Russian)].
- Широв А.А. (2020). Статистика в интересах экономики и общества. Проблемы прогнозирования(1), 5–9. [Shirov, A. (2020). Statistics in the interests of economy and society. Problems of Forecasting (1), 5–9 (in Russian)].
- Широв А.А. (2021). Использование потенциала роста российской экономики для достижения целей развития общества. Научные труды Вольного экономического общества России 230(4), 113–120. [Shirov, A. (2021). Utilization of the growth potential of the Russian economy to achieve the goals of society development. Scientific Proceedings of the Free Economic Society of Russia 230(4), 113–120 (in Russian)]. DOI: 10.38197/2072-2060-2021-230-4-113-120
- Широв А.А. (2023). Развитие российской экономики в среднесрочной перспективе: риски и возможности. Проблемы прогнозирования (2), 6–17. [Shirov, A. (2023). Development of the Russian economy in the medium term: Risks and opportunities. Problems of Forecasting (2), 6–17(in Russian)]. DOI: 10.47711/0868-6351-197-6-17
- Babushkina, E., Zhirnova, D., Belokopytova, L., Tychkov, I., Vaganov, E., Krutovsky, K. (2019). Response of four tree species to changing climate in a moisture-limited area of South Siberia. Forests 10(11), 999. DOI: 10.3390/f10110999
- Banaś, J., Šafařík, D., Utnik-Banaś, K., Hlaváčková, P. (2022). Identifying long-run and short-run relationships in the European Union softwood market. Forest Policy and Economics 143, 102821. DOI: 10.1016/j.forpol.2022.102821
- Buongiorno, J. (2019). Country-specific demand elasticities for forest products: Estimation method and consequences for long term projections. Forest Policy and Economics 106, 101967. DOI: 10.1016/j.forpol.2019.101967
- Buongiorno, J., Johnston, C. (2018). Potential effects of US protectionism and trade wars on the global forest sector. Forest Science 64(2), 121–128. DOI: 10.1093/forsci/fxx001
- Chas-Amil, M., Buongiorno, J. (2000). The demand for paper and paperboard: econometric models for the European Union. Applied Economics 32(8), 987–999. DOI: 10.1080/000368400322048
- Chugunkova, A., Pyzhev, A. (2020). Impacts of global climate change on duration of logging season in Siberian boreal forests. Forests 11(7), DOI: 10.3390/f11070756
- Heaton, C., Ponomareva, N., Zhang, Q. (2020). Forecasting models for the Chinese macroeconomy: the simpler the better? Empirical Economics 58(1), 139–167. DOI: 10.1007/s00181-019-01788-0
- Hu, L., Song, C., Ye, S., Gao, P. (2022). Spatiotemporal statistical imbalance: A long-term neglected defect in UN Comtrade dataset. Sustainability 14(3): 1431. DOI: 10.3390/su14031431
- Jiang, Z., Chen, C., Li, N., Wang, H., Wang, P. et al. (2022). Advancing UN Comtrade for physical trade flow analysis: Addressing the issue of outliers. Resources, Conservation and Recycling 186, 106524. DOI: 10.1016/j.resconrec.2022.106524
- Kharuk, V., Ponomarev, E., Ivanova, G., Dvinskaya, M., Coogan, S., Flannigan, M. (2021). Wildfires in the Siberian taiga. Ambio (50), 1953–1974. DOI: 10.1007/s13280
- Kirdyanov, A., Hughes, M., Vaganov, E., Schweingruber, F., Silkin, P. (2003). The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees – Structure and Function 17(1), 61–69. DOI: 10.1007/S00468-002-0209-Z
- Korotkikh, O. (2020). A multi-country BVAR model for the external sector. Russian Journal of Money and Finance 79(4), 98–112. DOI: 10.31477/rjmf.202004.98
- Mayorova, K., Fokin, N. (2021). Nowcasting growth rates of Russia’s export and import by commodity group. Russian Journal of Money and Finance 80(3), 34–48. DOI: 10.31477/rjmf.202103.34
- Michinaka, T., Tachibana, S., Turner, J. (2011). Estimating price and income elasticities of demand for forest products: Cluster analysis used as a tool in grouping. Forest Policy and Economics 13(6), 435–445. DOI: 10.1016/j.forpol.2011.05.011
- Nepal, P., Buongiorno, J., Johnston, C., Prestemon, J., Guo, J. (2021). Global forest products trade model. In: van Kooten, C., Voss, L. (eds.) International Trade in Forest Products: Lumber Trade Disputes, Models and Examples. CABI, 110–141. DOI: 10.1079/9781789248234.0006
- Pyzhev, A., Gordeev, R., Vaganov, E. (2020). Reliability and integrity of forest sector statistics – A major constraint to effective forest policy in Russia. Sustainability 13(1), 86. DOI: 10.3390/su13010086
- R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (accessed on June 23, 2023)
- Riviere, M., Caurla, S., Delacote, P. (2020). Evolving integrated models from narrower economic tools: The example of forest sector models. Environmental Modeling & Assessment 25(4), 453–469. DOI: 10.1007/s10666-020-09706-w
- Tchebakova, N., Parfenova, E., Soja, A. (2009). The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environmental Research Letters 4(4). DOI: 10.1088/1748-9326/4/4/045013
- Wickham, H. (2009). ggplot2. Elegant Graphics for Data Analysis. New York: Springer.
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. et al. (2019). Welcome to the Tidyverse. Journal of Open Source Software 4(43), 1686. DOI: 10.21105/joss.01686
Publisher: Southern Federal University
Founder: Southern Federal University
ISSN: 2073-6606
Founder: Southern Federal University
ISSN: 2073-6606